14 research outputs found

    Towards Formally Verified Optimizing Compilation in Flight Control Software

    Get PDF
    International audienceThis work presents a preliminary evaluation of the use of the CompCert formally specified and verified optimizing compiler for the development of level A critical flight control software. First, the motivation for choosing CompCert is presented, as well as the requirements and constraints for safety-critical avionics software. The main point is to allow optimized code generation by relying on the formal proof of correctness instead of the current un-optimized generation required to produce assembly code structurally similar to the algorithmic language (and even the initial models) source code. The evaluation of its performance (measured using WCET) is presented and the results are compared to those obtained with the currently used compiler. Finally, the paper discusses verification and certification issues that are raised when one seeks to use CompCert for the development of such critical software

    Formally verified optimizing compilation in ACG-based flight control software

    Get PDF
    International audienceThis work presents an evaluation of the CompCert formally specified and verified optimizing compiler for the development of DO-178 level A flight control software. First, some fundamental characteristics of flight control software are presented and the case study program is described. Then, the use of CompCert is justified: its main point is to allow optimized code generation by relying on the formal proof of correctness and additional compilation information instead of the current un-optimized generation required to produce predictable assembly code patterns. The evaluation of its performance (measured using WCET and code size) is presented and the results are compared to those obtained with the currently used compiler

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Formal Verification Workbench for Airbus Avionics Software

    No full text
    International audienceAirbus chose to introduce formal method in his development process for a critical application of the A380 program. This formal verification is used for the Unit Validation and replaces the more traditional method of Unit Testing. By this way, formal method is quietly introduced and doesn't change global process of the development cycle; only design phase and Unit Validation are impacted. A specific method of Unit Proving has been defined in order to use formal verification and proof technology for Unit Validation. The formal verification tool, Caveat, produced by the CEA has been chosen and integrated in a workbench that conforms to the operational, industrial and particular context of use. This experience demonstrates that the use of formal methods for Unit Validation is possible and competitive for a certain category of software

    Effect of general anaesthesia on functional outcome in patients with anterior circulation ischaemic stroke having endovascular thrombectomy versus standard care: a meta-analysis of individual patient data

    Get PDF
    Background: General anaesthesia (GA) during endovascular thrombectomy has been associated with worse patient outcomes in observational studies compared with patients treated without GA. We assessed functional outcome in ischaemic stroke patients with large vessel anterior circulation occlusion undergoing endovascular thrombectomy under GA, versus thrombectomy not under GA (with or without sedation) versus standard care (ie, no thrombectomy), stratified by the use of GA versus standard care. Methods: For this meta-analysis, patient-level data were pooled from all patients included in randomised trials in PuMed published between Jan 1, 2010, and May 31, 2017, that compared endovascular thrombectomy predominantly done with stent retrievers with standard care in anterior circulation ischaemic stroke patients (HERMES Collaboration). The primary outcome was functional outcome assessed by ordinal analysis of the modified Rankin scale (mRS) at 90 days in the GA and non-GA subgroups of patients treated with endovascular therapy versus those patients treated with standard care, adjusted for baseline prognostic variables. To account for between-trial variance we used mixed-effects modelling with a random effect for trials incorporated in all models. Bias was assessed using the Cochrane method. The meta-analysis was prospectively designed, but not registered. Findings: Seven trials were identified by our search; of 1764 patients included in these trials, 871 were allocated to endovascular thrombectomy and 893 were assigned standard care. After exclusion of 74 patients (72 did not undergo the procedure and two had missing data on anaesthetic strategy), 236 (30%) of 797 patients who had endovascular procedures were treated under GA. At baseline, patients receiving GA were younger and had a shorter delay between stroke onset and randomisation but they had similar pre-treatment clinical severity compared with patients who did not have GA. Endovascular thrombectomy improved functional outcome at 3 months both in patients who had GA (adjusted common odds ratio (cOR) 1·52, 95% CI 1·09–2·11, p=0·014) and in those who did not have GA (adjusted cOR 2·33, 95% CI 1·75–3·10, p<0·0001) versus standard care. However, outcomes were significantly better for patients who did not receive GA versus those who received GA (covariate-adjusted cOR 1·53, 95% CI 1·14–2·04, p=0·0044). The risk of bias and variability between studies was assessed to be low. Interpretation: Worse outcomes after endovascular thrombectomy were associated with GA, after adjustment for baseline prognostic variables. These data support avoidance of GA whenever possible. The procedure did, however, remain effective versus standard care in patients treated under GA, indicating that treatment should not be withheld in those who require anaesthesia for medical reasons

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe
    corecore